A new procedure for estimating the enthalpies of formation for RCH2 free radicals

Yurii D. Orlov*a and Vyacheslav V. Takhistovb

^a Department of Physics and Technology, Tver State University, 170000 Tver, Russian Federation. Fax: +7 0822 33 1274; e-mail: s000771@tversu.ru

^b St. Petersburg Scientific Centre of Ecological Safety, Russian Academy of Sciences, 197042 St. Petersburg, Russian Federation. Fax: +7 812 235 4361

DOI: 10.1070/MC2000v010n01ABEH001122

From the observed regularity that for certain substituents the $\Delta\Delta H_{\rm f}^0$ values for Me \rightarrow RCH₂ free radicals and CH₂=CH₂ \rightarrow RCH=CH₂ molecules are nearly identical, new or corrected values for the enthalpies of formation were estimated for about 30 gaseous free radicals and molecules.

It is known that the H \rightarrow Me replacement in hydrocarbon molecules gives different $\Delta\Delta H_{\rm f}^0$ ($\Delta H_{\rm f}^0$ shift) values: ca. –20.9 kJ mol⁻¹ in alkanes, –33.5 for CH₂=CH₂ \rightarrow MeCH=CH₂ or –43.3 kJ mol⁻¹ for HC=CH \rightarrow MeC=CH replacement.^{1,2} The observed tendencies could be explained by the increasing electronegativity (EN) value of the carbon atom in $sp^3 \rightarrow sp^2 \rightarrow sp$ hybridization accompanied by a stabilization effect of the Me group. We observed that for certain substituents the $\Delta\Delta H_{\rm f}^0$ values for Me \rightarrow RCH₂ free radicals and CH₂=CH₂ \rightarrow RCH=CH₂ molecules are very close with minor deviations < 6.5 kJ mol⁻¹ which is in the range of mean accuracy of $\Delta H_{\rm f}^0$ (R) determination (Table 1). This fact can be indicative of nearly identical charges at C-atoms of both the Me free radical and the ethylene molecule or of their nearly identical EN values.

Let us comment data presented in Table 1. The experimental $\Delta H_{\rm f}^0$ (ClCH=CH₂) = 37.2 kJ mol⁻¹ was criticised,^{5,6} and the new value 21.7 kJ mol⁻¹ (ref. 5) was computed [the brief form of $\Delta H_{\rm f}^0$ instead of the full form of $\Delta H_{\rm f}^0$ (gas; 298.15 K) is used in the text]. An analysis of the thermochemistry of ROH and their fluorinated analogues RF^{2,9} displayed the $\Delta\Delta H_{\rm f}^0$ (ROH \Rightarrow RF) of ca. –(20–25) kJ mol⁻¹ and thus $\Delta H_{\rm f}^0$ (FCH₂CH=CH₂) = = -148.5 was taken from $\Delta H_{\rm f}^0$ = -122.0 kJ mol⁻¹ (ref. 1) for HOCH₂–CH=CH₂ instead of the estimated values –155 (ref. 7) or –172 kJ mol⁻¹ (ref. 8). For checking the known and finding the new values of the enthalpies of formation for free radicals we widely used isodesmic reactions^{2,3,6,9} originally suggested by Benson.¹² For example:

$$^{\circ}$$
CH₂OH + MeF \longrightarrow MeOH + $^{\circ}$ CH₂F + Q (1) $\Delta H_{\rm f}^0$ /kJ mol⁻¹: -17.6³ -228.0^{2,9} -201.5¹ -32.0^{3,13} -12.1

An isodesmic 'reaction' is a hypothetical reaction, but like any reaction, its enthalpy is related to the enthalpies of formation of reactants and products. We define Q as $-\Delta H_{\rm reaction}$ for convenience; -Q measures the deviation from bond additivity. If Q>0, the free radical in the right-hand side of an isodesmic reaction is more stable than that in the left-hand side, and at Q<0 the free radical in the right-hand side ('CH₂F) is less stable than the free radical ('CH₂OH) in the left-hand side of equation (1). Equations (2) demonstrate the most important regularity in the stabilities of free radicals: a less stable free radical extracts a larger stabilising effect from the same substituent (here Me) than a more stable one ($\Delta H_{\rm f}^0$ and Q values in kJ mol⁻¹):

The isodesmic reactions in (2) are given in the brief form 'SH \rightarrow MeS' instead of the full form 'SH + MeSH \rightarrow H₂S + MeS' + + Q because the structures of the molecules taking part in isodesmic reactions are obvious.

We represent the application of isodesmic reactions to deduce the correct value of $\Delta H_{\rm f}^0$ for 'CH₂SH. If we involve a currently

used value of 151.9 kJ mol⁻¹ (refs. 10, 13) in isodesmic reactions (3), we see the inconsistency of Q values with thermochemical properties of free radicals: 'CH₂OH free radical being slightly more stable than 'CH₂F (Q < 0 for 'CH₂OH \rightarrow 'CH₂F) should give the Q' value more negative than Q'' [compare with equation (2)] but not a positive one (the $\Delta H_{\rm f}^0$ values were taken from refs. 1 and 2):

In general, the electron-donor properties (which stabilise free radicals centres) of the substituents comprising the elements of the third row of the Periodic Table are smaller than those for the elements of the second row: Cl < F, S < O and P < N. For example, the σ_p^+ and R (resonance) constants are more positive (destabilization) for the elements of the third row. 14 Therefore, the ΔH_f^0 value 175.7 kJ mol⁻¹ for 'CH₂SH fits better the above properties of the elements (equations 4). We also obtain $Q \sim -20$ kJ mol⁻¹ by extrapolation for the 'CH₂NH₂ \rightarrow 'CH₂PH₂ isodesmic reaction and taking ΔH_f^0 ('CH₂PH₂) = -20.9 kJ mol⁻¹ (ref. 2) we obtain ΔH_f^0 ('CH₂PH₂) = 194.6 kJ mol⁻¹. Next, calculating $\Delta \Delta H_f^0$ (Me \rightarrow 'CH₂PH₂) = 49.0 kJ mol⁻¹, we get the previously unknown value of ΔH_f^0 (CH₂=CHPH₂) = ΔH_f^0 (CH₂=CH₂) (52.5) + 48.9 = 101.4 kJ mol⁻¹.

The enthalpies of formation for some of the free radicals collected in Table 1 or discussed in the text were also estimated using the group additivity with non-linear correction (GANLC) method.^{15–18} The method was successfully used for verifying, correcting or getting new values for about 350 free radicals and carbene-like species from diverse classes of hydrocarbons and heteroatomic compounds.¹⁹ The GANLC method is represented by three versions in which three different levels of approximation are used. The method is based on the introduction of the variable group contribution to free radical thermochemistry as compared with earlier suggested constant group contributions.¹² For example, in the $XC^4H_2C^3H_2C^2H_2C^1H_2$ free radical the group contributions of -CH₂- (2), -CH₂- (3) or -CH₂- (4) differ from those in neutral molecules reflecting the effect of the free radical centre on the thermochemical properties of these groups. The GANLC method was detailed in refs. 15-18. The reliability of the method is further confirmed in this work. Thus, the value 177.4 kJ mol-1 was obtained for the 'CH₂SH free radical supporting the suggested value 175.7 kJ mol-1 (Table 1). For the ClCH₂CH₂ and HOCH₂CH₂ free radicals, the values 92.9 and

Table 1 $\Delta \Delta H_f^0(g)$ values for Me⁻ \rightarrow RCH₂ free radicals and CH₂=CH₂ \rightarrow RCH=CH₂ molecules (ΔH_f^0 and $\Delta \Delta H_f^0$ in kJ mol⁻¹).

RCH:	$\Delta H_{\rm f}^0({\rm RCH}_2^{\cdot})$	$\Delta \Delta H_{\rm f}^0(A)$ Me \rightarrow RCH ₂	$RCH=CH_2$	$\Delta H_{\rm f}^0({\rm RCH=\!CH}_2)$	$\Delta \Delta H_{\rm f}^0({\rm B})$ ${\rm C_2H_4} \rightarrow {\rm RCH=CH_2}$	$\Delta A \rightarrow B$
Me ⁻	145.6 ¹		CH ₂ =CH ₂	52.51		
MeCH;	110.92,3	-34.7	MeCH=CH ₂	20.0^{1}	-32.5	+2.2
HOCH,CH;	-29.3^{2}	-174.9	HOCH ₂ CH=CH ₂	-124.5^{1}	-177.0	-2.1
2 2	$-31.0^{3,4}$	-176.6	2 2			-0.4
CICH;	121.32,3	-24.3	CICH=CH ₂	$21.8^{5,6}$	-30.7	+6.4
FCH ₂ CH;	-56.5^{3}	-202.1	FCH ₂ CH=CH ₂	-172.08	-224.5	-22.4
2 2			2 2	-154.87	-207.3	-5.2
				$[-148.5]^9$	-201	+1.1
BrCH;	169.43	+23.8	BrCH=CH ₂	79.21	+26.7	+2.9
-			-	[75.4]	+22.9	-0.9
ICH;	228.0^{3}	+82.4	ICH=CH ₂	134.7 ^{2,7}	+82.2	-0.2
H ₂ NCH;	149.4^{3}	+3.8	H ₂ NCH=CH ₂	$[57.0]^{2,7}$	+4.5	+0.7
HSCH;	151.9^{10}	+6.3	HSCH=CH ₂	[82.4]	+29.9	+23.6
2	$175.7^{2,3}$	+30.1	-			-0.2
ClCH ₂ CH;	91.2^{11}	-54.4	CICH ₂ CH=CH ₂	[1.2]	-51.3	+3.1
Me ₂ CH	$77.8^{2,3}$	-67.8	$Me_2C=CH_2$	-16.9^{1}	-69.4	-1.6
MeCHCl'	72.0^{10}	-73.6	$MeC(Cl)=CH_2$	-20.9^{1}	-73.4	+0.2
Cyclobutyl radical	214.6^{10}	+69.0	Methylidenecyclobutane	121.3^{1}	+68.8	-0.2
Cyclopentyl radical	105.010	-40.6	Methylidenecyclopentane	12.11	-40.4	-0.2

-33.9 kJ mol⁻¹, respectively, were calculated, which are very close to the data in Table 1. The value of $\Delta H_{\rm f}^0$ estimated by the GANLC method for 3-cyanocyclobutyl free radicals is 338.9 or 343.0 kJ mol⁻¹ which was derived from either 251 or 255 kJ mol⁻¹, respectively, for NCCH₂CH₂ free radicals.

We used the regularities represented in Table 1 for either getting new values of the enthalpies of formation for RCH₂ free radicals from the known or estimated values of the enthalpies of formation for RCH=CH₂ molecules or *vise versa*. For estimation of $\Delta H_{\rm f}^0$ (RCH=CH₂), we used the earlier found observation^{2,7,9} that $\Delta \Delta H_{\rm f}^0$ (RPh \rightarrow RCH=CH₂) replacement gives the more or less permanent value $-30~{\rm kJ~mol^{-1}}$. Since the $\Delta H_{\rm f}^0$ values for RPh molecules are widely represented in the literature, ¹ those for $\Delta H_{\rm f}^0$ (RCH=CH₂) can be reliably estimated. For example, taking $\Delta H_{\rm f}^0$ values for PhNH₂, PhSH and PhBr to be 87.0, 112.4 and 105.4 kJ mol⁻¹, respectively, and $\Delta \Delta H_{\rm f}^0$ (RPh \rightarrow RCH=CH₂) $-30~{\rm kJ~mol^{-1}}$, we get 57.0, 82.4 and 75.4 kJ mol⁻¹ for the enthalpies of formation for CH₂=CHNH₂, CH₂=CHSH and CH₂= CHBr molecules, respectively.

Using the found regularity that the $\Delta\Delta H_f^0$ values for radicals and molecules are identical and the known data on ΔH_f^0 of RCH=CH₂ molecules, either experimental¹ or estimated from known data on RPh,¹ EH₄, EMe₄ and EPh₄ molecules^{20–24} (E = Si, Ge, Sn, Pb) and $\Delta\Delta H_f^0$ (RCH=CH₂ \rightarrow RPh) \sim 30 kJ mol⁻¹ (refs. 2, 7 and 22), the following new values for the enthalpies of formation for free radicals were obtained (kJ mol⁻¹): CH₂==CHCH₂CH₂· 198.7; PhCH₂CH₂· 228.0; 2-bicyclo[2,2,2]octyl radical 83.7; BrCH₂CH₂· 138.1; ICH₂CH₂· 190.4; CH₂=CHOCH₂· 79.5; 'CH₂OAc –221.7; 'CH₂CH₂C(O)OEt –261.5; 'CH₂OC(O)Ph –98.3; 'CH₂OPh 115.1; H₂NNHCH₂· 265.7; NCCH₂CH₂· 255.2; 3-cyanocyclobutyl radical 347.3; HSCH₂CH₂· 154.8; EtS(O)-CH₂CH₂· -10.5; *p*-MeC₆H₄SO₂CH₂CH₂· 108.8; 'CH₂PH₂ 194.6; 'CH₂At 284.5; H₃ECH₂· 165.3, 240.6, 324.3, 405.8 (E = Si, Ge, Sn or Pb, respectively).

A new estimation procedure for the enthalpies of formation of RCH₂ free radicals can be applied to RR CH (Table 1) and other organoelement free radicals.

This work was supported by INTAS (grant no. 96-1990).

References

- 1 J. B. Pedley, R. D. Naylor and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd edn., Chapman and Hall, New York, 1986.
- 2 V. V. Takhistov, Organicheskaya mass-spektrometriya (Organic Mass Spectrometry), Nauka, Leningrad, 1990 (in Russian).
- 3 D. Ponomarev and V. Takhistov, J. Mol. Struct., 1997, 435, 259.
- 4 L. A. Curtis, D. L. Lucas and J. A. Pople, J. Chem. Phys., 1995, 102, 3292.
- 5 L. A. Curtis, K. Radhavachari, P. C. Redfern and J. A. Pople, J. Chem. Phys., 1997, 106, 106.
- 6 D. Ponomarev and V. Takhistov, J. Chem. Educ., 1997, 74, 201.

- 7 Y.-R. Luo and J. L. Holmes, J. Phys. Chem., 1992, 96, 9568.
- 8 Y.-R. Luo and J. L. Holmes, J. Phys. Chem., 1994, 98, 303.
- V. V. Takhistov, T. A. Pashina, N. G. Ismagilov, V. M. Orlov, A. A. Rodin and V. G. Barabanov, Zh. Org. Khim., 1995, 31, 1786 (Russ. J. Org. Chem., 1995, 31, 1582).
- 10 CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 1996–1997.
- 11 K. Miyokawa and E. Tschuikow-Roux, J. Phys. Chem., 1990, 94, 715.
- 12 S. W. Benson, J. Chem. Educ., 1965, 42, 502.
- 13 D. F. McMillen and D. M. Golden, Ann. Rev. Phys. Chem., 1982, 33, 493
- 14 C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.
- (a) Yu. D. Orlov and Yu. A. Lebedev, Izv. Akad. Nauk SSSR, Ser. Khim., 1984, 1074 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 897); (b) Yu. D. Orlov and Yu. A. Lebedev, Izv. Akad. Nauk SSSR, Ser. Khim., 1984, 1335 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 1227); (c) Yu. D. Orlov, Yu. A. Lebedev and B. L. Korsunskii, Izv. Akad. Nauk SSSR, Ser. Khim., 1984, 1550 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 1424); (d) Yu. D. Orlov and Yu. A. Lebedev, Izv. Akad. Nauk SSSR, Ser. Khim., 1986, 1121 (Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 1016).
- 16 (a) Yu. D. Orlov and Yu. A. Lebedev, Zh. Fiz. Khim., 1991, 65, 289 (Russ. J. Phys. Chem., 1991, 65, 163); (b) Yu. D. Orlov and Yu. A. Lebedev, Zh. Fiz. Khim., 1993, 67, 925 (in Russian)
- 17 Yu. D. Orlov, Yu. A. Lebedev and G. A. Krestov, *Dokl. Ross. Akad. Nauk*, 1994, **338**, 776 (in Russian).
- 18 Yu. D. Orlov, Yu. A. Lebedev, L. G. Menchikov and O. M. Nefedov, Izv. Akad. Nauk, Ser. Khim., 1997, 57 (Russ. Chem. Bull., 1997, 46, 52).
- 19 Yu. D. Orlov, Dr. Sci. Thesis, Tver, 1996.
- 20 D. A. Ponomarev and V. V. Takhistov, J. Mol. Struct., in press.
- 21 W. V. Steele, J. Chem. Thermodyn., 1983, 15, 395.
- 22 V. V. Takhistov, Dr. Sci. Thesis, Leningrad, 1989.
- 23 W. V. Steele, J. Chem. Thermodyn., 1978, 10, 445.
- 24 R. Walsh, in *The Chemistry of Organic Silicon Compounds*, eds. S. Patai and Z. Rappoport, Wiley, New York, 1989, p. 371.

Received: 25th February 1999; Com. 99/1450